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VARIATIONAL PRINCIPLES OF NON-LINEAR THEORY OF BRITTLE FRACTURE* 

LE KHAN CHAU 

An energy criterion of equilibrium of a non-linearly elastic body with a 
crack is formulated. Equations of statics and conditions which must 
hold at the outer boundary of the body, at its surface and at the slit 

edge, are derived. An evolutionary variational inequality is 
postulated, from which the formulation of the dynamic problem of the 
motion of a body with an expanding crack follow. 

I. ~omnutation of the problem. Let us consider an elastic solid which has a defect 
when in its natural state. The defect can be modelled by a displacement discontinuity surface, 
which will be called, from now on, the crack. Let this crack be situated on a smooth, two- 
dimensional surface 9, with a smooth boundary XZ. We take the natural configuration of the 
body occupying the region VQ = V\(Q U an) of three-dimensional Euclidean space as the 
reference configuration, and denote the Cartesian coordinates of the particles of the body 
in this configuration by Xo,a = 1,2,3. In the deformed state the Cartesian coordinates of 
the particles will be given by the formulas 

Ji = .rj (X,, x,, X,), i = 1, 2, 3 

The coordinates xi fill the volume v of the current configuration. If the deformed 
body with a crack is in a state of equilibrium, the functions xi (Xc) will map in 1:l 
correspondence with a positive Jacobian. When X, pass through 0, the functions xi become 
discontinuous. The traces xi (-Xl) on both sides of P describe the surfaces of the crack 
in the deformed state (Fig.1). 

The first problem consists of establishing the criterion of equilibrium of the con- 
figuration zi (X,). With this purpose in mind, we shall formulate the following variational 
principle: in order for the defromed body with a crack to remain in equilibrium, it is 
necessary and sufficient that the variation in the energy of the body taken in a specified 
configuration be greater than, or equal to zero for all admissible configurations. We shall 
call's virtual configuration of the body admissible, if its displacement discontinuity surface 
contains Q, or if it coincides with it. 

If the body has no crack, the criterion of equilibrium in the class of all continuous 
configurations reduces to the well-known principle of stationarity of the energy of a non- 
linearly elastic body /l-3/. The generality of the energy criterion of equilibrium was 
satisfactorily demonstrated-for other mechanical systems by Gibbs /4/. The papers by Griffiths' 
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/5, 6/ provide the source for a generalization of this criterion to the mechanics of the 
brittle fracture of a body with a crack. In order to find the critical length of the crack 
(in the plane problem) Griffiths differentiated the total energy of the body which included 
the surface energy of the crack, along the crack, and equated it to zero. This idea was 
further developed in numerous publications (e.g. /7-12/). 

In the present paper the criterion is used to find the equations of statics and the 
boundary conditions in the problem of the equilibrium of a geometrically and physically non- 
linear body with a crack. We note that imposing a restriction on the admissible configurations 
in the energy criterion prevents the body returning to the state with a "recovered" crack. 
Therefore, the theory is distinctly non-holonomic and irreversible. As a result, the con- 
dition of equilibrium (or of non-propagation) of the crack consists of the requirement that 
the modulus of the transverse energy flux arriving at the crack edge should be less than, or 
equal to double the surface energy density. When the linearization is carried out, the con- 
dition reduces to the well-known Cherepanov condition /I, 8/. 

If the condition of equilibrium does not hold for even a single configuration, the crack 
will become a propagating crack. The problem of the motion of a body with a crack, even in 
the material description, is a problem with a varying inner boundary. Here we have a typical 
mechanical system, with constraints being released. The most suitable method of describing 
such systems is that of the evolutionary variational inequality /13, 14/. In the case of a 
body with a crack, it is best to begin the study of variational inequality by analysing the 
equation of energy balance. Such an analysis shows why the kinetic energy flux must complement 
the work of the D'Alembert's inertia force in the evolutionary variational inequality of the 
theory of fracture. While postulating the evolutionary variational inequality, we must also 
demand that when the possible variations are replaced by the real velocities, the inequality 
will become the equation of energy balance /2, 3/. Only then can we find the complete system 
of relations necessary to formulate a dynamic problem. 

Fig.1 Fig.2 

2. Criterion of equilibrium. Thus, if we take the criterion of equilibrium formulated 
above as the starting point, the formulation of the boundary-value problem of the equilibrium 
of an elastic body with a crack will reduce to that of specifying its energy on all admissible 
configurations in which the surfaces of discontinity differ from Q. Let some arbitrary con- 
figuration zi(X,) have the surface of discontinuity C. By analogy with the Griffiths theory 
we postulate the following expression for the functional of the energy of the body: 

E = j U(xi,o,Ks)dX+ S2ydA+ 1 p@(q)dX- s T,s,dA 
“z r VI 8VT 

V, = V \ (S u ax) av = av, u ifVT 

(2.1) 

Here dX and dA are the volume and area elements respectively, p0 is the mass density 
of the material in its normal state, U (xi,., KB) is the volume internal energy density and 
y is the surface energy density. The tensor zi,o = ar,/ax, corresponds to the locality 
gradient (distortion), and Ks(X,)(B = 1, . . ., N) to the characteristics of the material (of 
the modulus of elasticity type). The mass force potential is denoted by Q, (zi), and Ti is 
the "dead" load acting on the segment aVT of the outer boundary of the body. The position 
of the particles on the remaining part of the outer boundary aV, is assumed given: 5i = 
ri (X,). Here and henceforth the lower case Latin indices assume the values 1, 2, 3 a coma 
preceding the index denotes a partial derivative in X,, and repeated indices denote summation. 

According to the energy criterion, the configuration of the body si(X,) with disconti- 
nuity surface Q will be in equilibrium if for all admissible configurations yi= yi (X,, 
6) with discontinuity surfaces 61e x,B satisfying the constraints yi (X,,,O) = zi (X,) and 
yi (X,, e) = ri (X,) at X, E av.z, the following inequality holds: 

6E = dE [yi (X,, &)I/ de lea, Z 0 (2.2) 



545 

To obtain a corollary from (2.2) we must determine 6E. Since the discontinuity surfaces 
in admissible configurations may differ from 52, when E #O, it follows that in calculating 
6E it is convenient to introduce a 1:l mapping of V onto V according to the rule I', = Y, 

(X,7 4, such that the surface Q will become Qe and Y(X,,e)= X, when E = 0 and when 
X.Eav (the outer boundary is fixed with respect to the particles). 

First we shall determine, separately, the variation of the internal energy 

Here and henceforth the symbol 6 will be used to denote a partial derivative in E when 
E = 0, X, = con&. For example, 6Y, = aY,,(X,,&)/ae lezo. Tai = alI/ Bzi,o is the Piola-Kirchhoff 

tensor and yi,,, = ayi/a17a. It can be shown that 6 (yi,.,) = 6yi,, - q,b 6Yb,a, 6y, = ay, (Y, (X,. E) 

we, therefore 

6U= S [T&yi,. + pab6Y a,b + (a~/aKs)Ke,n6Y,]dx (2.3) 
"$1 

where pob = -Tbixia + U& is the analogue of the chemical potential tensor in the theory of 
phase transfer 12, 4/. Since si (X,) and other functions become discontinuous on Q and 
may have a singularities in the neighbourhood of an, we transform the integral (2.3) by 
first replacing the domain of integration VQ by V,, with internal boundary Bh separated 
from ac2 by a distance of the order of k (Fig.2). 

Integrating the relation (2.3) by parts and 1etting.k tend to zero, we obtain 

au = 1 [- T,i,.by, + (- hb, b + (au/aKd KB,a) syczl dX + (2.4) 

"~M'.tayirNz+ {rab)NbSY~ldA--*J,GY.dS + 

,S, T,i6yiN,dA ((fl=f--_f') 

Here dS is the element of length, the plus and minus superscripts denote the limiting 
values of the corresponding magnitudes on both sides of B,N. in the vector of the outer 
normal (it is directed, on g, towards the side correspond&g to the plus sign). Finally, 
J is the vector of the energy flux arriving at the crack edge given by the formula 

(2.5) 

where the closed contour r, in the plane transverse to 6Q embraces the point X, on aQ 
and contracts to it in the limit when the length of the contour 1 rl tends to zero. 

The integrals (2.5) are analoguesof J, which represents the integral in the geometri- 
cally linear theory of fracture /7, 12/. We note that in deriving the relation (2.4) we 
assumed the following asymptotic behaviour of the stress field near the crack edge: 

lim S T,,Qc, dS = 0 
II‘I-ro 1, 

Such a property holds if the order of the singularity of T,, near 88 is less than 
unity. 

The variations of the remaining terms of expression (2.1) have the form 

6 j 2ydA= - {4yHN,6Y, dA f j Byv,&Y,dS 
Qe L1 an 

(2.6) 

6 5 T,y,dA= 1 TibyidA, 6 1 poO(yi)dX= 
a”T fJ”T vs2e 

S ~oFi (~YI+ xi,c6Ya) dX t S ~0 10) NahYadA 
vn u 

where h' is the mean curvature of the surface 8, Fi= -a0,/&q are the volume forces, y, is 
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the vector of the normal to the crack edge an. By virtue of the above restrictions the 
virtual discontinuity surfaces @ always contain Q and tend to it as E-+0. If the 
surfaces B" are smooth continuations of 8, then v, will represent, at the same time, a 
vector tangent to 9. In the general case this is optional, and Y, just indicates a normal 
direction from aa to SF. Having combined relations (2.4) and (2.6), we arrive at the 
formula 

(2.5) 

It is clear that 6yi and 6Y, can take any prescribed values in 8, just as 6yi 
can on ~VT. Therefore from (2.2) and (2.7) it follows that 

Tai,a + poFi = 0, Tai = 87l&ri., (2.8) 

-,&,b,b + (au/aKB)KB,, + &F&a = 0 (2.9) 

Z, = rI (X,) on av,, T,,N, = Ti on av., (2.10) 

We note however, that Eqs.(2.9) hold automatically by virtue of Eqs.(2.8). 
In order to obtain the remaining relations, we shall analyse the constraints imposed on 

the variations 6y,, 6Y, on 52 and aR. 
If the crack edges do not touch each other in the deformed state, then 6y,* can take 

any prescribed value. 
Let us assume that the above statement is false. In this case we denote by R+ and Q- 

the subregions of R, whose points are in contact after the deformation. If we superimpose 
on the surface R a two-dimensional curvilinear coordinate system, the contact condition wi 
become 

We can show that the following inequality holds for the points qa and 8,: 

@A+ h,) - h- RJI nt > 0 

where n, is the general vector of the normal to the contacting surfaces directed towards 
the side with minus sign. In addition, we can show that the quantities GYi*zi, a can take 
any value on hl where 3i,a = dzilaq,. In case of the slippage of crack edges, the frictional 
forces are disregarded. 

The assumption that @X51 implies the following constraints for the functions 6Y,: 
6Y,N, = 0 on 8, 6Y,v, > 0, 6Y,n, = 6Y,ra on aa, where ra and n, are the tangent vector 
and binormal to as2, respectively. 

Taking all the above constraints into account, we obtain the following boundary conditions 
from (2.2) and (2.7): 

TSNG = 0 on Q\ Q*, T,,N,,rl,. = 0 on B’ 

Tzi&,ni I/Z (qa = T,iN,ni I’% 10, = - p < 0 on R+ 

{Pob)N&,a = 0 on & 

1 J, 1 = l/JaJa - J32& 2y 

(a = det [ sag I, a,b = X,, J,, 0, X,,, = aX,laq,, J, = I,,T,) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Condition (2.13) holds identically by virtue of the other constraints. 
Thus,relations(2.8T,(2.10),(2.11),(2.12)and(2.14)represent, as a set, a complete system 

of equations and boundary conditions which must hold for any equilibrium configuration. We 
note that the condition of non-propagation of the crack (2.14) is separated from the remaining 
conditions. Therefore, when the problems are being solved in practice, we can first solve 
the system (2.8), (2.101, (2.11) and (2.12) so as to find the configuration xi (xl) and 
stress field Taj, and then use formula (2.5) to find .I, and confirm the condition (2.14). 

3. Evotutio?lary VariatioMt i7lequatity. If no configuration satisfies Eq.(2.8) and 
boundary conditions (2.101, (2.11), (2.12) and (2.14), the crack cannot be in equilibrium and 
it becomes a propagating crack. We denote the discontinuity surface of the body at the 
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instant t by S,. Since the process of crack propagation is irreversible, it follows that we 
must impose the following constraint on Q: &,x & for t' > t. Thus even in the material 
description we have a problem with a changing inner boundary which is not specified in advance. 
The law of motion for a body with a crack has the form 

Zi = Xi (X,9 t)9 Xa E Vf = v\ (G U ap*) (3.1) 

In order to obtain the equations of motion for si(X,, t), it is best to begin by 
analysing the energy balance 

d (E + Kydt = 0 

E = ’ U(G,WKB)~X + 5 2ydA+ 1 p@((s)dX - s 
“1 $5 Vi 

(3.2) 

(3.3) 

The functional E describes the potential energy of the body and surface energy of the 
crack, and K the kinetic energy of the body. Here xi' = c!& (X,,, t)lat is the velocity of the 
particles, and the remaining symbols are as before. Since E and K depend ,on t through the 
variables of the domain of integration, it follows that in order to fix these domains it is 
best to introduce the 1:l mapping of V into V according to the rule X,' = X,‘(X,,t’), such, 
that the surface C& passes into R,,; and X,' (X,, t') = X,, when t' = t and X,E aV. The 
functional E depends on t in exactly the same way as on E, and hence in order to obtain E 
we only need to replace in formula (2.7) 6E by E', 6yi by &xi and 61', by XL’, where 
the symbol & denotes a derivative of a composite function of t with fixed X,: 

&Xi = axi (X,' (X,, t’), tyat It’+ 

This symbol is introduced here in order to stress the difference, for example, between 
bxi and xi'. Let us now find K’: 

After changing the coordinates the velocity of the particles takes the form 

5,' = ax, (X,', t’yat (f’d 
It is clear that 

x; = &Xi - xi.oXa". &Xi' = Xi" + si,o'x," (3.5) 

where x1" = a$ (X,, tyatz is the acceleration of the particles. Substituting the expression 
(3.5) for &xi' into formula (3.4) and integrating the last term by parts, we obtain 

(3.6) 

where rt is a closed contour in the plane transverse to Y&r embracing the point X, on 
apt and x0 is the vector of the outer normal to rt. The vector Q,, represents the kinetic 
energy flux arriving at the crack edge. 
with a crack has the form 

Thus the law of conservation of energy for the body 

d (E + K),jdt = s [(p".zi" - T,i, a- PoFi) +i + (- hb, b + taujafh) KB. a + (3.7) 

"1 

1 (2y~,- Z,)X,"dS + 5 (ToiN,- Ti)dtzidA 
0% av, 

I,= lim 1 [--~t&,o~~ +(u + +&,+-+.]dS 
lr*l-a 1' t 

(3.8) 



In (3.7) we have taken into account the fact that N,X,',= 0 on Qt (this property 
follows from the fact that sit, 3 a, for t'> t). 

Let us now consider the evolutionary variational inequality. To do this we introduce 
the class of admissible motions of the body with a crack yi (X,, t, E), with the discontinuity 
surface Qte, satisfying the constraints QP_? & for all t. Since Slle can differ from Rt, 
we shall construct, as before, the mapping from V into V according to the rule Y-e = Y, (X,, t,e) 
such that the surface Ql becomes QtE and Y, (X,, t, E) = X, when e =0 or X, E av. 

Next we shall formulate the principle of virtual work for the body with a crack as follows: 
in the real motion of the body with a crack the evolutionary variational inequality 

6E + S ~o~i"(6yi-_i.,~Y,)dX- S Q,6Y,dS>O 

holds for all instants of time t and for all variations of the admissible motions 6yi, W,. 
Moreover, this principle will demand that the variational inequality (3.9) should become an 
equality expressing the law of conservation of energy, provided that 6yi and 6Y, in (3.9) 
are replaced by 6*si and X,". Here the symbol 6 denotes the partial derivative in e 
for fixed X0, t, taken at e = 0: 

The functional E in (3.9) depends on the admissible functions yi(X,,t, E) with the dis- 
continuity surfaces in the following manner: 

6yj = ayi (Ya (X,, t, E), t, E)/aE le=O 

6Y, = By, (x,, t, E)/ae le=o 

E = s U(Y,.,V Ks)dXr S 2ydA+ S p,Qdx- S TiyidA 

VIE dVT 

The vector of the kinetic energy flux Q. is given by (3.6). Comparing (3.6) and (3.7) 
with (3.9), we easily see why the variational inequality (3.9) contains, apart from the usual 
work done by inertia forces, the kinetic energy flux. However, the equation of energy balance 
appears to be only a heuristic concept and Eqs.(3.9) is regarded as a postulate in the dynamic 
theory of fracture. 

Expanding the variation of energy E in inequality (3.9) we find, as before, that the sum 
of the integrals in (3.7) is non-negative when &Xi is represented by 6yi and X," by 6Y,. 
The inequality, together with the constraints imposed on the functions 6yi and 6Y,, and 
listed above, leads to the relations 

Toi, (L + poFi = poxi-, Tai = au/azi. a in Vt 

xi = ri (x,) on dv,, T,~N, = Ti on avT 

T,$N, = 0 on ‘&\C&*, T&N,Xi,a = 0 on at* 

TziN,ni l/a I,,, = Ti<iV”tti I’% 10, = - p < 0 on &* 

1 z, 1 = l/z.z, - z,2 < 2y on as I, = Zap, 

(3.10) 

where f&* are the prototypes of the contacting crack edges at the instant t, and Z, is the 
vector of the energy flux given by (3.8). 

We shall now make use of the second part of the principle formulated above. Replacing 

6Yi, sy* in the variational inequality (3.9) by Z&xi, X," and taking (3.10) into account, 
we obtain the law of conservation of energy in the form 

~{T&si)N~dA+~ (2pv,-ZJX,“dS=O 
f 

(3.11) 

Here Xar’v, determines the normal rate of propagation of the crack edge. 
From (3.11) we obtain the additional relations 

p > 0 + lzi*+ (?kJ - xi*- (&)ln, = 0 

p = 0 + [xi'+ (xl,) - xi'- (O,)ln, > 0 on s2,* 

I Z, )< 2y=+X,"v, = 0 ( no propagation ) 
1 la 1 = 2y ==+ X,"V, > 0, 2YY, = I, - I,& 

(3.12) 



Relations (3.10) and (3.12) together form a complete system of equations and boundary 
conditions for determining the motion of a body with a crack. 
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THE SELFSIMILAR DYNAMIC PROBLEM OF A HYDRAULIC CRACK WHEN ITS SIDES INTERACT 

WITH A CLEAVING GAS FLOW* 

YU.N. GORDEYEV 

A selfsimilar solution of the problem of the propagation of a hydraulic 
crack, taking into account the interaction of its edges with a cleaving 
gas flow, is obtained. The influence of this interaction on the stress 
intensity factor (SIF) and the dynamic flow characteristics is studied. 

In the problems of cleavage of an elastic half-space by a rigid wedge, one of the 
factors influencing the SIF is the force of friction between the wedge and elastic medium 
/l/. When solving the quasistationary problems of the hydrofracture of a stratum, the 
firctional forces arising between the gas flow and the crack edges are taken into account 
only in the equation of motion of the flow. The shear stresses connected with the frictional 
forces are neglected when the equations of the theory of elasticity are solved /2/. The 
selfsimilar dynamic problems of the propagation of cracks cleaved by a gas flow were studied 
in this approximation in /5, 6/, using the method of functionally invariant solutions /3, 4/. 
When the cracks are cleaved by means of compressed gas at high velocities, as happens in the 
case of impulsive hydrofracture /7/ and in the problems of explosive fracture /8/, the shear 
stresses arising at the crack edges can become considerable. 
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